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Spanwise vorticity measurements have been performed in zero-pressure-gradient 
boundary layers over the range 1010 < R, < 4850 (R, = U,  B/v, where Urn is the free- 
stream velocity and 0 is the momentum deficit thickness) using a four-wire probe. In 
addition, experiments quantifying the spatial and temporal resolution required to 
obtain an accurate statistical representation of the small-scale structure of wall- 
bounded turbulence were performed. Furthermore, a thorough investigation of 
statistical convergence for a variety of fluctuating quantities was performed. 
Comparisons with earlier high-resolution studies indicate that the maximum value 
of u’/u, increases with increasing Reynolds number over the given R, range (u’ = 
r.m.s. u, and u, is the friction velocity). It is suggested that detecting this dependence 
provides a good measure of probe resolution. In general it was found that statistics 
of velocity gradients were distinctly more sensitive to finite probe size than velocity 
statistics. Wire spacing experiments suggest that Wyngaard’s (1969) criterion is to 
a good approximation valid even under anisotropic conditions. Furthermore, it was 
found that instantaneously spatial averaging of &/at caused significant attenuation 
in the resulting r.m.s., and that this averaging procedure is sensitive to the level of 
mean shear. A simple method of estimating how noise in the u-velocity signals enters 
into the au/ay signals is presented. The convergence study shows that statistical 
convergence criteria developed from free-shear flows severely underestimates the 
averaging times required in boundary layers. A table of general convergence criteria 
is provided. 

1. Introduction 
Over the past thirty years studies of wall-bounded turbulent shear flows have 

identified the existence of coherent motions. To further understand the nature of 
these motions there has been an increased emphasis on the measurement of velocity- 
gradient quantities and their associated statistical properties. This increased 
emphasis stems from the general belief that coherent motions embody organized 
vorticity, or that they result from interactions involving organized vorticity. 

As a rule of thumb, i t  is generally acknowledged that to resolve the smallest scales 
of motion in a turbulent flow the probe must be capable of resolving motions of 
approximately the Kolmogoroff scale, 7 (= (v3/€)+). In the near-wall region of a fully 
turbulent boundary layer, say y+ < 50, this corresponds to less than 5v/u,. Few flow 
facilities allow for studies that have the capability to achieve this resolution. Since 
multi-wire probes are needed to obtain time-resolved spatial gradients, both the 
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length of the hot wires and the spacing between them should, in principle, satisfy this 
criterion. The following partial survey gives an indication of resolutions and 
integration times that have been used in studies of wall-bounded turbulent shear 
flows measuring time-resolved velocity gradients and/or vorticity components. 

Early boundary-layer studies used probes that were relatively large compared to 
the Kolmogorov scale. Corrsin & Kistler (1954) studied the intermittent region of a 
rough-wall turbulent boundary layer a t  Re x 7900 using a streamwise vorticity 
probe designed by Kovasznay (1950). This probe's wire length, 1' = lu,/v, was 
approximately 100 wall units, and the average wire spacing was x 70 wall units. 
Kovasznay, Komoda & Vasudeva (1962) used a parallel array with spacing yf x 8, 
with wires of length I +  x 24 to study the later stages of the transition process. The 
wire spacing in this study was about one-tenth of the boundary-layer thickness. 
Kovasznay, Kibens & Blackwelder (1970) used a pair of single-wire probes to detect 
the vorticity fronts and backs of the large-scale motions in a fully turbulent 
boundary layer a t  R, x 3100. Their wires had a length of 25 wall units and a spacing 
that varied from 40 to 60 wall units (or about 10-16 Kolmogorov scales). Using the 
result of Wyngaard (1969), Blackwelder & Kovasznay (1970) estimate that this 
spacing resulted in resolving about 70% of the true r.m.s. 

Later works involved more complicated multi-wire probes. These probes enabled 
one or more vorticity components to be measured. Eckelmann et al. (1977) studied 
w, and wy as close as yt = 15 in a channel flow at  Rd,2 = 4000 (Rd,* is based upon the 
channel centreline velocity and half width). Their five-film probe had films with an 
average spacing and length of 1.75 wall units. An interesting additional point is that 
they found that non-dimensional averaging times, 2TU,/d, of greater than 5000 were 
needed to obtain stable ensemble averages. Falco (1980) using the same type of probe 
as in the present study, measured w, in a fully turbulent boundary layer at y+ = 16 
for Re = 1068. The spatial scale of this probe was 1+ = Ay+ = 3.6 and Azt = 11.5. In 
this combined visualization/hot-wire study, approximately 210 boundary-layer 
thicknesses were observed. Kastrinakis (1977) in a study of turbulent channel flow 
using Kovasznay (1950)-type w, probes (with the average wire spacing, h+ x I+ x 5 
at  R,/, x 6250) made both single and two-point w, measurements as close as y+ x 9. 
However, further study of this probe by Kastriniakis, Eckelmann & Willmarth 
(1979) indicated that since the four wires were not independently operated the probe 
output was significantly sensitive to all three velocity components. Later Kastrinakis 
& Eckelmann (1983) measured streamwise vorticity with a four-wire (independently 
operated) probe in a fully developed channel flow as close as y+ x 19 for Rd,2 = 
12000. This probe had hf x 11.5,1+ = 9.1, and their record length was 2TUJd = 
2670. Subramanian, Kandola & Bradshaw (1985) studied the low-wavenumber 
aspects of w, in the outer part of a fully developed turbulent boundary layer at 
R, = 14500. Their wire spacing for au/ay was z 375 wall units, and their wire length 
was x 75 wall units. Their averaging time was TU,/S w 7700. Balint, Vukoslavcevic' 
& Wallace ( 1 9 8 7 ~ )  in a study of a fully turbulent boundary layer a t  R, = 2100 
measured for the first time all three components of vorticity from yf = 14.5 to y/S = 
0.95. This nine-wire probe had h+ = 8.9 (J. M. Wallace, private communication), 
with wire lengths of If = 2.3. Their averaging time was TUJS x 3100. More recently 
(Balint et al. 1987b) they have used a probe with an improved signal-to-noise ratio 
that had h+ = 10.4 and 1+ = 2.3 at  Re = 2850. Klewicki (1989) using the apparatus 
described herein, has measured spanwise vorticity distributions and two-point w, 
correlations across turbulent boundary layers in the range 1010 < Re < 4850. 

Using an array of two wires in a ' v '  configuration that is embedded in the walI, it 

gradient. 
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is possible to obtain vorticity measurements in the immediate vicinity of the wall. 
Hogenes & Hanratty (1982) in a conditional-averaging study of turbulent pipe flow 
a t  Rd12 = 18040 used electrochemical probes with I +  x 8.5, Az+ x 3.8, and 2TUJd = 
540. Blackwelder & Eckelmann (1979) studied the vorticity signatures a t  the wall 
associated with the bursting phenomena in a turbulent channel flow at Rd,2 = 3850. 
The elements of their v-array were positioned at 45” to the mean flow direction. Their 
films’ length were 1+ = 1.3, and were spaced Az+ = 5.3 apart. The averaging time used 
was 2TUJd = 3440. Kreplin & Eckelmann (1979), also using the Gottingen oil 
channel, used v-array probes to obtain long-time-averaged statistics. Using the same 
probe at the same Reynolds number as Blackwelder & Eckelmann, they determined 
that an averaging time of 2TUJd = 2870 was required to obtain ‘adequate’ 
convergence of velocity statistics up to the fourth moment. 

Recently Alfredsson et al. (1988) have attempted to clarify sources of measurement 
error using wall-shear-stress sensors, and hot-wirelfilm probes in the sublayer. With 
respect to probe resolution effects, they found that for streamwise velocity 
measurements in the sublayer, probes of length I+ = 2 and 10 resulted in no 
differences within experimental error. (Measurements made with a probe of I+  = 8 in 
air resulted in discrepancies that were attributed to wall heat transfer effects). 
The range of their experiments included Reynolds numbers up to approximately 
R, = 2800. 

The above partial survey gives an indication of the resolution of experimental 
studies. Pertinent to understanding flow physics, questions then arise concerning 
what resolution is necessary to resolve the origin of coherent events. Early visual 
studies (for example Kline et al. 1967) have shown that important motions of the 
order of the sublayer thickness exist in the near-wall region. Probe studies support 
these results. Emmerling (1973) using an array of interferometric wall pressure 
transducers (of scale x 54 viscous units) in a turbulent boundary layer a t  R, = 2000 
found exampIes of strong pressure disturbances that were about & the transducer 
size. Schewe (1979) (working in the same tunnel a t  R, x 1400) showed that trends in 
the wall pressure intensity, skewness, kurtosis and the frequency of occurrence of 
pressure peaks continue to change with decreasing transducer size. Even for his 
smallest diameter transducer, d+ = 19, there was no indication that these trends had 
levelled-off. Willmarth & Bogar (1977) (working in a boundary layer at R, = 11 700 
with x -arrays having E+ = s+ = 2.5; s being the spacing between a pair of x -wires) 
estimated that velocity gradients ‘in the small scale structure near the wall will only 
become small over a distance that is less than approximately & of the Kolmogoroff 
length’. Later Willmarth & Sharma (1984) using probes of length less than l.Ov/u, 
(at R, = 6840 and 9840) give direct evidence for the existence of near-wall ‘shear 
layer fluctuations whose scale is of the order of the viscous length’. On the other 
hand, Johnson & Eckelmann (1983) working in the Gottingen oil channel a t  Rd12 = 
3800 and using x-films with I +  x s+ N 1.7 did not find evidence of this ultra-small- 
scale structure. However, as they noted, their Reynolds number was approximately 
thirty times lower than that of Willmarth & Bogar. 

To date, reliable experimental guidelines related to obtaining an accurate 
statistical representation of wall turbulence are incomplete. Numerous problems 
have hindered progress in quantifying the turbulent motions that form and interact 
near the wall, but perhaps the most prevalent of these concerns the spatial resolution 
of the measurement probes. Uberoi & Kovasznay (1953) were the first to show 
analytically that for isotropic turbulence the output of a hot wire is attenuated as the 
length of the wire is increased. In an experimental study of the spatial resolution of 
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single-wire probes, Johansson & Alfredsson (1983) found significant attenuation in 
the measured value of u' due to spatial averaging caused by finite wire length. They 
also concluded that Reynolds-number effects are small compared with spatial 
averaging effects, Similar results have been found in boundary layers by Willmarth 
& Sharma (1984) and Ligrani & Bradshaw (1987). Ligrani & Bradshaw concluded 
that for studies outside of the sublayer adequate resolution for single-wire probes 
may be obtained if 1+ < 20, and the wire length-to-diameter ratio is l / d  > 200. 
Furthermore, they showed that a t  yf = 17 significant changes in the high-frequency 
end of the u-velocity component spectrum occur for variations in 1' from 14.0 to 3.3. 
Mestayer (1982), using Wyngaard's (1968) correction, showed that significant 
attenuation occurs in the high-wavenumber spectra of u and especially v for S/T,I  and 
117 both equal to 4.5. Since vorticity is concentrated in the higher wavenumbers, the 
equally accurate measurement of derivative quantities probably requires even better 
resolution. Furthermore, the accuracy of derivative measurements as obtained by 
two wires is degraded by problems additional to finite wire length. Antonia, Rrowne 
& Chambers (1985) indicate that the most important of these are the unequal time 
constants of the wires, mismatch in the wire calibrations, and the effects of finite wire 
separation. 

Most analytical studies of the effect of finite wire spacing in multi-wire arrays, such 
as Wyngaard (1968, 1969), and Roberts (1973), use isotropic assumptions. A recent 
compilation by Browne, Antonia & Shah (1987) shows that many turbulent shear 
flows (and especially wall-bounded flows) exhibit significant levels of anisotropy. 
Thus, the validity of the results of the above analytical studies under anisotropic 
conditions is uncertain. As probes of smaller non-dimensional scale are used, 
presumably a more accurate representation of a probability distribution can be 
obtained. It is unclear, however, how the additional fine-scale information obtained 
through enhanced resolution of wall-region motions affects the convergence of 
statistics. 

The purpose of the present study is to examine some of the factors concerning the 
accurate measurement of various turbulence statistics using hot-wire probes. Results 
were obtained using a four-wire spanwise vorticity probe in very thick turbulent 
boundary-layer flows. The scale of the flow field allowed for very good spatial 
resolution. Descriptions of the flow facility, the experimental conditions and the 
probe. characteristics are given in $5 2 and 3. Information concerning the low-speed 
nature of the present experiments is given in $4. Section 5.1 includes results 
concerning the measurement of gradients in an anisotropic flow, as well as an 
evaluation of the effect of the probe's asymmetry on its measurement accuracy, 
Section 5.2 summarizes results pertaining to the averaging times necessary for 
adequate statistical convergence as a function of Reynolds number and position in 
the boundary layer. Section 6 presents further discussion and conclusions. 

2. Experimental facilities and conditions 
The experiments were performed in the 1 7 m  low-speed wind tunnel in the 

Turbulence Structure Laboratory a t  Michigan State University. The test section of 
this suction tunnel is 17.1 m long, 1.21 m wide and nominally 0.61 m high. The top 
and one sidewall of the tunnel are made of Plexiglas to allow for flow visualization, 
and the other two sides are made of plywood. The tunnel is positioned in the centre 
of a 18.3 m x 30.5 m x 6.1 m pressure and temperature controlled laboratory which 
acts as the return circuit when the tunnel is used in the closed-return mode. Suction 
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for the tunnel is provided by a low-noise axial fan, and is kept at  constant speed by 
an eddy current speed controller. The fan assembly is mounted on vibration 
absorbers and is isolated from the test section via flexible joints. A carefully adjusted 
set of screens and honeycombs developed via an iterative procedure, and based upon 
the work of Loerke & Nagib (1977) and deBray (1967), make up the tunnel inlet. This 
inlet configuration was constructed to avoid the formation of Taylor-Gortler vortices 
associated with tunnel inlet contractions. The resulting free-stream turbulence 
intensities at the speeds of the present experiments were less than 0.2 %. The tunnel 
exit consists of a 2 : 1 axial diffuser followed by a 2 : 1 radial diffuser. For the present 
experiments the adjustable top wall of the tunnel was set at a divergence of 0.25" 
over its entire length, resulting in a differential pressure coefficient, dC,/dx (where 
C, = dp/pV,), of less than f0.002; a value well within the tolerance of 0.02 deemed 
negligible by Murlis, Tsai & Bradshaw (1982). The spanwise uniformity of the flow 
at the present measurement location is +2.3% peak-to-peak across the centre 
0.46 m as determined by Preston tube surveys (Rashidnia 1985). For more details 
concerning the flow facility and its qualification the reader is referred to Rashidnia 
(1985) and Klewicki (1989). 

The data acquisition, signal conditioning, and probe positioning apparatus 
consisted of the vorticity probe (described in $3.1), four DISA 55MOl constant- 
temperature anemometers, a custom-built analogue signal amplifier, a MKS 
Baratron model 398 differential pressure transducer, two Krohn Hite model 3323 
analogue filters, a Data Translation DT3368/DT3369 simultaneous sample and hold 
A/D subsystem contained within a PDP 11/23 computer, a cathetometer capable of 
measuring vertical distances to within 0.01 mm ( f O . O O 1  mm) used to locate the 
probe centre from the wall, and a vertical traverse mechanism capable of measuring 
to within 0.0254 mm (+0.00254 mm). 

The zero-pressure-gradient boundary layers studied develop along the lower wall 
of the flow facility. A 6.35 mm threaded rod was used to trip the flow approximately 
0.5 m downstream of the tunnel inlet. Tripping the flow was not necessary to obtain 
a fully developed state at  the measurement station but did serve to localize transition 
and ensure spanwise uniformity. The measurement station was approximately 
15.25 m downstream of the tunnel inlet. A summary of the principal characteristics 
of the boundary layers at the three Reynolds numbers considered is given in table 1, 
and logarithmic mean velocity profiles as measured by the spanwise vorticity probe's 
x -array are presented in figure 1. Determination of the friction velocity was made 
using the Clauser plot technique, in conjunction with Coles' (1968) law of the wall. 

3. The spanwise vorticity probe 
3.1. Physical characteristics 

The spanwise vorticity probe used is similar to that described by Foss, Klewicki & 
Disimile (19863). However, the calibration and computational scheme used to obtain 
the vorticity time series is simpler than theirs because boundary-layer flows in 
general do not generate the large incidence angles encountered in mixing layers and 
jets. The probe, shown schematically in figure 2, consists of a parallel-array, and a 
x -array located at the same streamwise (2) position but displaced in the spanwise 
(2) direction. The spacing of the wires in the parallel array is nominally 1.0 mm, as 
is the spacing of the slant wires comprising the x -array. The spacing between the 
centres of the parallel and x -arrays is x 3.4 mm. The slant wires of the x -array are 

5 FLM 219 
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- 

R, urn (m/s) 4, (mm) H u, (m/s) c, f, (Hz) f, (Hz) 

1010 0.607 206 24.8 1.45 0.0282 0.00430 250 500 
2870 1.752 205 24.5 1.40 0.0707 0.00325 500 1000 
4850 2.981 199 24.3 1.38 0.1125 0.00285 1000 2000 

TABLE 1. Principal characteristics of the zero-pressure-gradient boundary layers of the present 
study; f, = low-pass cutoff frequency; f, = sampling frequency 
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FIGURE 1. Logarithmic mean velocity profiles: A, R, = 1010; ., 2870; +, 4850. 
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FIQURE 2. Schematic of the spanwise vorticity probe (dimensions in mm). 

nominally a t  an angle of 45" with respect to probe axis; a determination of their 
'effective ' angles is made during calibration. 

The individual tungsten hot-wires are 5 pm in diameter and are copper plated. The 
copper plating allows the wires to be soft-soldered to the ends of the support prongs, 
and also aerodynamically isolates the central etched active region from the support 
prongs. The overall wire length is 3 mm with a centre active region of 1 mm. This 
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gives a lengthldiameter ratio of x200. For the present experiments all of the hot 
wires were operated a t  an overheat ratio of 1.7. According to the study of 
Champagne, Sleicher & Wehrman (1967), under these conditions end heat conduction 
loss from the wires should be less than 8 YO of the convective heat loss. The wires of 
the parallel array are mounted on x 2 0  mm long jeweller's broaches. The ratio of the 
broach length to  the tapered probe head diameter is about 8. This is believed to 
greatly reduce possible probe-body effects on the gradient measurements, as 
discussed by Bottcher & Eckelmann (1985). For further details concerning the probe's 
physical characteristics, refer to Foss et al. (1986 6 ) .  

3.2. Calibration 
Calibration of the parallel-array wires is performed by fitting the data to an equation 
of the form E2 = A + BVn, where the best least-squares fit was chosen from n = 0.40 
to n=0.60. To minimize errors in aulay due to mismatched calibration of the 
parallel-array wires, one wire was calibrated with velocities deduced from the 
pressure transducer and the second wire was then calibrated against the first (a 
procedure suggested by J. F. Foss, private communication). The calibration 
procedure used for the x -array is a variation of an 'effective' angle technique (see 
Signor 1982; Lovett 1982; Klewicki & Falco 1988). All calibrations were performed 
using mean flow data. Based upon results of Foss, Ali & Haw ( 1 9 8 6 ~ )  no corrections 
were used to compensate for spanwise velocity contamination of the x -array data. 
At least one determination of the calibration constants was made both prior to and 
following each acquisition session. 

4. Factors affecting data quality 
During the course of this study factors indicative of the experiment quality were 

thoroughly examined. These factors address issues such as the sampling rate and low- 
pass cutoff frequencies (see table 1 ), digitizer resolution, total averaging times (see 
$5.2), and the methods of data reduction. This information is presented in detail in 
Klewicki & Falco (1988), and, in general, follows the design criteria of Tennekes & 
Wyngaard (1972) and/or Antonia, Satyaprakash & Hussain (1982). In the following 
subsection additional issues concerning uncertainties resulting from the lower flow 
velocities of this study are discussed. 

4.1. Effects of natural convection from the hot wires 
As a result of the low flow velocities used in the present experiments, questions arose 
concerning the possible effects of natural convection from the hot wires. For natural 
convection, the square root of the Grashof number (Gr = g/?d3At/v3) is analogous to 
the Reynolds number (R = U,d/v)  of a forced flow, see for example Gebhart (1971). 
By equating Gri and R, one may deduce a characteristic velocity associated with 
natural convection to be U, = (gd/?At)t. Using this relation and the parameters 
pertinent to the present measurements, 

d = 5 x 10+ m 
At = 205 "C 

p x 2.5 x lop3 OK-' (avg), 

one finds U, = 0.005 m/s. The lowest mean velocity measured in the R, = 1010 
boundary layer was 0.127 m/s. Thus, even in the worst case the estimate of the 
natural convection velocity was only about 4 YO of the mean. Of course 4 YO of the 

5-2 
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mean could be significant when considering the fluctuating quantities. However, 
numerous statistics of fluctuating quantities in the near-wall region that should be 
sensitive to the directional bias imposed by natural convection (for example, the 
skewness of u and v, have been examined, Klewicki 1989), and none of these data 
exhibit features leading us to suspect that natural convection has caused quantifiable 
errors. 

4.2. Free-stream uncertainty 
Because of the relatively low flow speeds and the long integration times involved in 
the present experiments, it  was felt necessary to quantify the variations in the free- 
stream velocity. In particular, answers to the following two questions were desired : 
(1) Within a given data record acquisition time, what is the maximum uncertainty 
associated with possible variations in U,, and (2) was there a quantifiable change 
either in the wire calibration constants or the free-stream conditions over the 
duration of an entire measurement session '1 

4.2.1. Variations in U ,  during a single record 
In order to quantify the effects of possible variations in U,  it  is insufficient to 

simply measure the variation in the mean velocity over the duration of a data record 
(say by computing the variance of an ensemble of short-time averages), because 
changes in the mean velocity do not necessarily provide an accurate measure of this 
effect on fluctuating quantities. Instead, a better measure would be to examine this 
effect on the fluctuations directly. One would expect the higher-order odd moments 
to be most sensitive to mean variations. In  general, however, odd moments tend to 
converge very slowly, and thus the use of the variance of a skewness over a given 
data record would also include additional convergence error. Given these con- 
siderations, it was decided to quantify the possible effects of variations in U ,  by 
observing the maximum percent variation in (uv> from its final converged value a t  
y/6 M 0.37. This variable was chosen since it is both an odd moment (i.e. the first) of 
a turbulence quantity, and it converged quite rapidly. The criterion was employed 
a t  y/6 x 0.37 since, in general, statistics in this region converged most rapidly. Thus, 
a criterion was established that best isolates the convergence errors from those that 
result from variations in U ,  during a given data record. The uncertainty as indicated 
by this criterion for the R, = 1010, 2870 and 4850 boundary layers is 1.9, 1.5 and 
1.2 % respectively. These values were interpreted as the 'noise ' level in the analysis 
of statistical convergence summarized in $5.2. 

4.2.2. Effects of long-term variations in experimental conditions 
A considerable effort was made in ensuring that calibration drift errors were 

minimized. Essentially, the quality control of calibration drift errors was maintained 
by comparing the calibrations performed both before and after each experiment. In 
the event of discernible calibration drift, the experiment was repeated (see Klewicki 
& Falco 1988). 

Since there was good climate control within the laboratory (Ifr0.25 "C and no 
detectable variation in pressure), the variation in U ,  over the duration of an entire 
experiment could be attributed to the performance of the fan speed controller/motor. 
To measure this performance, a reproducibility experiment was run that consisted of 
positioning the w, probe at y+ x 6.2 in the R, = 1010 boundary layer and acquiring 
five data files at equal time intervals over a period of approximately eight hours. 
(Note that in all experiments described herein the electronics and flow facility were 
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FIQURE 3. Measured ol v/u,2 values at different locations in the R, = 1010 boundary layer a8 
a function of experiment time: A, auxiliary experiment y+ x 6.2; v, correlation experiment 
y+ x 13.4; 0 ,  correlation experiment y+ % 100.5; solid lines represent values from the R, = 1010 
distribution of figure 11  at the y+ values indicated. 

allowed to 'warm-up ' for a t  least 1$ hours). Furthermore, comparisons are made with 
results derived from the stationary probe of the two-point w, correlation 
measurements of Klewicki (1989). The length of each data record of the 
reproducibility experiment was 20% of the record used a t  y+ = 6.2 in figure 11. The 
results of this experiment, in terms of 0: v/u,2, as well as the data from the correlation 
experiments (with probes fixed at y+ x 13.4 and 100.5) are given as a function of the 
run time in figure 3. The horizontal lines represent data taken from the distribution 
of figure 11. A least-squares fit of each of the three data sets in figure 3 was made 
using the model w: = B,+B,t (where t is the run time). Given the assumptions of 
additive, zero mean, constant variance, uncorrelated, and normally distributed 
errors associated with the measurement of w: as a function of run time, and that the 
parameters B, and B, are non-random, an F test of these results indicate that one 
cannot reject the hypothesis that B, = 0, to a level of significance of 0.99. Thus, it 
was concluded that over extended periods of time U ,  did remain constant. Note also 
that the results of the reproducibility experiment show a much greater variation 
about the data of figure 11 than the results of the correlation experiments - which 
had much longer averaging times. As a result of the relatively small sample sizes used 
in the reproducibility experiment, a good part of this point-to-point variation is 
probably attributable to incomplete convergence. This conclusion is further 
supported by the results in $5.2. 

To obtain an error bar on w:, standard deviations were computed from the data of 
figure 3. The errors bars in figure 11 represent f 1 standard deviation. The maximum 
standard deviation (at y+ = 6.2) is 4.6% of the measured value. The agreement 
between the mean values of the data of figure 3 and the corresponding points in the 
distribution of figure 11 are within +2% (thus indicating an ability to accurately 
reproduce the free-stream condition). Furthermore, the largest error bar represents 
a maximum error estimate for all of the distributions (Klewicki & Falco 1988). 

As a final comment, it should be noted that no wire breakages occurred over the 
time necessary to acquire the three R, distributions. 
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5. Results 
In this section results pertaining to spatial/temporal resolution and averaging 

times necessary for statistical convergence are presented, and compared with other 
wall flow studies. Section 5.1 presents results (along with support from previous 
studies) which are used to deduce conclusions pertaining to the spatial and temporal 
resolution needed to accurately resolve near-wall physics using hot-wire probes. Also 
included in $5.1 is information specifically pertaining to the validity and accuracy of 
the present measurements. Section 5.2 presents the results concerning averaging 
times necessary to obtain Statistical convergence. 

5.1. Spatial resolution 

Assessing the overall effect of finite spatial resolution on multi-wire probe 
measurements is difficult because of numerous contributing factors that are involved. 
In general, however, it appears to be fairly well documented that increasing the 
spatial scale of a probe will result in an attenuation of the statistical moments of the 
probe's signal. Given wires with sufficiently large length-to-diameter ratios, this 
attenuation can be caused by two major effects. Finite-wire-length effects tend to 
average high-amplitude small-scale fluctuations with spatially adjacent low- 
amplitude motions over the length of the sensing element. Finite-wire-spacing effects 
tend to spatially filter derivative signals a t  wavelengths about equal to the wire 
spacing. Both of these effects, primarily by causing a failure to resolve high- 
amplitude fine-scale information represented in the tails of a given probability 
distribution, will generally cause an attenuation in the measured values of both the 
even and odd moments of that distribution. 

5.1.1. Wire length effects 
An indicator of wire length effects on wall flow velocity measurements is the 

maximum measured value of u'/u7. Figure 4 presents the maximum value of u'/u7 
versus the non-dimensional wire length as found using the parallel-array wire closest 
to the wall, and from other wall flow investigations. Also included is a curve fit of the 
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data of Johansson & Alfredsson (1983) and Ligrani & Bradshaw (1987). This curve 
fit shows that, a t  a given Reynolds number, if one increases the length of a sensor the 
peak value of u‘/u, will decrease. However, the variation in the peak value of d/u, 
cannot be explained in terms of non-dimensional wire length alone. For example, the 
present data, those of Wei (1987), and Ueda & Hinze (1975) (all having I+ < 8) show 
a consistent decreasing trend as probes of smaller If are used. Furthermore, the data 
of Purtell, KlebanofT & Buckley (1981) as well as those of Andreopolous et al. (1984) 
apparently contradict the trend shown by the curve fit. In  the case of Purtell et al., a 
difference of 15 YO in the peak value is obtained for probes of nearly identical 1+ x 8, 
and then for larger 1’ the attenuation is less severe than either the Johansson & 
Alfredsson or Ligrani & Bradshaw data. I n  the case of Andreopolous et al., their data 
are roughly 15% higher than those predicted by the curve fit. 

To gain an understanding of this apparent scatter, the possibility of a Reynolds- 
number dependence was examined. To do this, the curve fit of figure 4 was used to 
correct the data by removing the attenuation caused by finite-probe-scale effects. 
(Note that the use of this curve fit implies the assumption that the attenuation is 
only a function of the non-dimensional sensor length scale, l+.) Figure 5 presents the 
corrected data of figure 4 as a function of Reynolds number. This figure clearly 
suggests that the true peak u’/u, value is Reynolds-number dependent. Note that 
only the data of Purtell et al. (for wire lengths I +  z 10.9, 20.4, 29.9), and those of 
Andreopolous et al. (1+ z 20.9, 33.4) actually required the correction for spatial 
attenuation in order to exhibit this trend. This apparent Reynolds-number 
dependence explains why the lower Reynolds number data of Purtell et al. are 15% 
lower, and why the data of Andreopolous et al. are 15 YO higher than suggested by the 
curve fit in figure 4. 

Apparently there are, in practice, competing effects between an increase in 
u’/uJmax as a result of a Reynolds-number dependence in its true value (over the 
given R, range), and an attenuation in its measured value resultant from finite- 
probe-scale effects. Given that many lower resolution studies in wall flows indicate 
that the maximum in d / u ,  decreases as the Reynolds number is increased, detecting 
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the opposite may provide a simple measure of the minimum probe spatial resolution 
necessary to study Reynolds-number effects. Assuming the above conclusion, the 
data of Purtell et al. show the correct Reynolds-number dependence for small l', but 
then with increasing Reynolds number (thus, increasing the non-dimensional probe 
scale) an opposite trend is observed. It therefore appears that  the attenuation effect 
is stronger than the demonstrated Reynolds-number effect for the given R, range. 

To gain an understanding of the effect of wire length on time-derivative statistics, 
the values of the skewness of au/at in the near-wall region were examined. The 
present results, shown in figure 6, are from the same wire used to derive the data in 
figure 4. Data from other channel and boundary-layer investigations are also shown 
(see table 2 ) .  The generally good agreement between the present data and those of 
Wallace, Brodkey & Eckelmann (1977) and Ueda & Hinze (1975) for y+ >/ 15 
probably reflects the fact that the spatial resolution (either wire length and/or wire 
spacing) of the probes in all of these investigations is about equal. It should be noted 
that Reynolds-number effects apparently do not significantly manifest themselves in 
this region of the flow over the range 300 < R, < 5000 for this statistic. Furthermore, 
the data of Johansson & Alfredsson show attenuation resultant from using larger 
probes (1' = 14, 32). Closer to the wall the data of this figure exhibit considerable 
scatter (up to 30%) for wire lengths in the range 5 < 1+ < 15. I n  the light of the 
discussion above concerning u'/u, this could be caused by spatial resolution and/or 
Reynolds-number effects. In general, comparison of the high- and low-resolution 
studies in this figure indicate that wire lengths must be significantly smaller than 14 
viscous units. 

To further refine when attenuation caused by finite-probe-scale effects becomes 
significant, estimates of the S(au/at) have been obtained from the x -array data of 
the w, probe. As the Reynolds number increased these profiles showed an identifiable 
decrease in the magnitude for y' < 50. This trend is consistent with the additional 
spatial averaging effects resulting from the wire spacing of the x -array. (Note that 
the u'/u, profiles derived from the x -array follow the R, trend exhibited by the curve 
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Studies@) 

Ueda & Hinze (1975) 

Andreopoulos et al. (1984) 

Purtell et al. (1981) 

Wallace et al. (1977) 
Johansson & Alfredsson (1983) 

Ligrani & Bradshaw (1987) 

Wei (1987) 

Balint et al. (1987a) 

Fig.@) 

4,5,  6 
4,5,  6 
4 , 5  
4, 5 
4 , 5  
4 , 5  
4 , 5  
4 , 5  
4, 5 
6 
4 
6 
4 

4 , 5  
4 , 5  
4 , 5  

12, 13 

Symbol 

R A  
R 
V 
V 
t 
t * 
Jk 
?k 
@ 
0 
0. 
v 
0 
o x 

Reynolds 
number 

R, = 1244 
R, = 4248 
R, = 3624 
R, = 5535 
R, =465 
R, = 1340 

R, = 3480 
R, = 5100 

Rdiz = 3850 
Rdl2 = 25000 
R,,, = 25000 
R, = 2620 

RdiZ = 2970 
RdI2 = 14914 
R,,, = 39580 
R, = 2 100 

R,= la40 

Probe 
type 
Single 
wire 

Single 
wire 

Single 
wire 

x -array 
Single 
wire 

Single 
wire 

LDA 

9-wire 
probe 

Probe scale in 
viscous units 

2.7 
6.7 

20.9 
33.4 
8.0 
8.2 

10.9 
20.4 
29.9 

1.9 
4, 14, 21, 32 

14,32 
3.3,34 

0.66 
2.76 
6.43 
9.5 

TABLE 2. Summary information concerning other wall-flow investigation data presented. Note that 
R, indicates boundary-layer flow, and R,,, indicates channel flow. See table 3 for information 
pertaining to the present probe dimensions 

fit in figure 5. )  Thus, it appears that spatial averaging has a greater effect on 
skewness of &/at than on u'/u,. This result is consistent with the notion that greater 
spatial resolution is required to obtain derivative information with the same 
accuracy as the variable itself. 

5.1.2. Wire spacing effects 
According to the study by Wyngaard (1969), in order to resolve fluctuating 

velocity gradients in an isotropic turbulent flow the wire separation, h, should satisfy 
the inequality, 

(1) 

where, T,I = (va/e)S. In  the present study E was estimated using four of the twelve 

1.0 < h/?j < 3.33, 

terms, 

This relation was derived by making the following assumptions : 

as well as assuming that the sum of the three cross-derivative terms is negligible. 
These assumptions are similar to those given by Klebanoff (1954). 
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Ro T L l  91, AY/Tmin AY/Vmax A ~ l ~ r n i n  ' z l ~ r n a x  

1010 1.3 3.2 1.5 0.6 5.0 2.0 
2870 1.4 5.3 3.4 0.9 11.1 3.0 
4850 1.7 7 .O 4.6 1.1 15.6 3.8 

TABLE 3. Normalized spanwise vorticity probe dimensions; v+ = yu,/v; ymin and rlrnax refer to 
minimum and maximum measured Kolmogorov scales found in each R, distribution (7 computed 
from E estimate of equation (2)). The individual wire length and x -array spacing are about equal 
to Ay 

AY: 
10 15 

0.9 

A Y h  

FIGURE 7 .  Attenuation of gradient intensity ratios as a function of the non-dimensional outer array 
wire separation (see insert) in the R, = 1010 boundary layer : solid symbols, y+ % 38; open symbols, 
Y+ = 53; H, n, (wat):/tau/atti; 0 ,  0, GWW;/(W~Y);. 

Table 3 presents a summary of the minimum and maximum non-dimensional wire 
separations encountered in the three boundary layers of the present study. In this 
table Ay represents the wire spacing in the parallel array, and Az represents the 
separation between the centres of the parallel and x -arrays. It should be noted that 
the resolution of w, does not depend on gradients in the spanwise direction. However, 
the given probe arrangement does assume that av/ax a t  z equals av/ax a t  z + Ax. Thus, 
the validity of this assumption, as well as the validity of (1) under anisotropic 
conditions were examined. Furthermore, since many multi-wire probes use spatial 
averages of temporal and streamwise derivatives to approximate measurements a t  
the given probe centre, the effect of wire separation on this process was also 
examined. 

An evaluation of wire spacing effects on the measured value of the associated 
spatial gradient was accomplished by performing an experiment that simultaneously 
measured au ldy  fluctuations at the same location using probes that had different wire 
separations. The experiment's geometry consisted of fixing a parallel array about a 
given point in the boundary layer, and then positioning a pair of y-traversable single- 
wire probes a t  equal Ay spacings above and below the parallel array. The 
arrangement is shown as an insert in figure 7. In this figure, Ayi is the wire spacing 



Statistics of small-scale structure in turbzclent boundary layers 133 

between the parallel-array elements, and Ay, is the spacing between the two single- 
wire probes. Simultaneous data from all four wires were taken for various Ay,, while 
keeping the centre position of Ayi and Ayo the same. The experiment was performed 
a t  y+ x 53 and a t  yi x 38 in the R, = 1010 boundary layer. 

Results pertaining to the attenuation in the measured r.m.s. of (aulay),  
(=  (au/ay)L) as Ay, was increased are given in figure 7. Data in this figure are 
presented as the ratio of (aulay); over (aulay);. Since data from all four wires were 
taken simultaneously for each Ay,, presentation in this way largely eliminates the 
effect of the observed & 3 % variation in (au/ay)’ from run to run. It is important to 
note that for the given boundary layer Ayl  x 1.84, and AyJq x 1.04 and 0.94 a t  
y+ x 38 and 53 respectively. The data in figure 7 are therefore equal to 1.0 a t  
these values and not a t  the origin. One thing to notice about both the yf x 38 and 
y+ x 53 data is that for Ay/q < 3 very little attenuation ( ~ 3 % )  occurs, and that 
changing the level of mean shear appears to have little effect. This suggests that 
Wyngaard’s estimate (equation (1)) is valid to a good approximation, even under 
anisotropic conditions. Another thing to note is the rapid attenuation ( -  15 %) for 
wire spacings between Ay/q = 3 and 6. 

The present results are seemingly in contrast to those of Bottcher & Eckelmann 
(1985), which predict that the inner array should give smaller r.m.8. values than the 
outer array for small Ay,. To better clarify the source of this discrepancy, Klewicki 
(1989), using the analysis procedure of Bottcher & Eckelmann, evaluated the 
performance of the parallel array (contained in the o, probe) in measuring the mean 
gradient, aU/ay. The study revealed that the observed attenuation in the measured 
mean gradient was generally much smaller than predicted by the Bottcher & 
Eckelmann study. Furthermore, the observed trends with increasing probe Reynolds 
number suggested the presence of a constant additive error source rather than an 
error source proportional to the mean gradient -as  predicted by Bottcher & 
Eckelmann. It is a t  present believed that the most significant factor responsible for 
the difference between the present results and those of Bottcher & Eckelmann 
concerns the probe construction ; specifically relating to how well the individual 
elements of the parallel array are isolated from the flow disturbance effects of the 
probe body, prongs and the other element (see $3.1). 

In  order to quantify spatial filtering effects of finite wire separation, spectra @ of 
the individual (au/ay),  and (aulay),  time series were computed. Examples of the 
frequency spectra for Aylq  = 0.94, 4.83 and 9.01 a t  y+ x 53 are presented in figure 
8. By using the wire spacing to construct an approximate frequency, f+, = 

U J ( 2 n  Ay) ,  it is clear that the effect of wire spacing is to attenuate the gradient 
intensity a t  higher frequencies. Furthermore, creating separate spectral plots from 
each pair of simultaneously acquired (au/ay),  and (au/ay), time records allowed for the 
determination of approximate effective low-pass cutoff frequencies (the frequencies 
a t  which the (au/ay),  spectra diverged from the (au/ay),  spectra). These results, as 
derived from the y+ x 53 data, are presented in figure 9 as a function of outer wire 
separation. In this figure the ordinate is the ratio of the approximate cutoff 
frequency over f K ,  where f K  = UJ(2nq). The error bar in figure 8 represents the data 
scatter a t  1 Hz, and was used in discerning the cutoff frequencies in figure 9. 

Interesting results concerning how noise in the velocity signals enters into the 
aulay signals are also described in figure 8. For the present data it is expected that 
a t  the highest measured frequencies the energy in the u-spectra is attributable 
entirely to electronic noise. This noise level, labelled E: in figure 8, is associated with 
the white-noise portion of the spectrum a t  high frequencies. For the u-spectra in this 
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FIGURE 8. Frequency spectra of au/ay at y' z 53 in the R, = 1010 boundary layer for different Ay 
spacings: 0, Ay/v = 0.94; +, Ay/v = 4.83; *, Ay/7 = 9.01. The horizontal lines through the 
au/ay spectra are the electronic noise levels as predicted by @(au/ay) = c;/Ay2; where €2 is the 
energy level of the electric noise in @(u). 

figure (derived from the lower wire of the inner array) e; is about e-15.75 ft2/s or, 
equivalently, less than 0.3 mV. By assuming that the e: from the wires are 
uncorrelated, in the noise-dominated part of the spectrum one may then approximate 
@(au/ay) by et/Ay2. Using this relation and the above-cited value for et  allowed 
estimates of the associated noise levels in @(au/ay) for the various Ay to be made. The 
predicted noise levels are indicated by the horizontal lines. As can be seen, the 
predicted values agree very well with the actual noise levels in the auli3y-spectra. 
These results suggest that the noise level in a single velocity signal can be used to 
determine the minimum acceptable Ay spacing used to measure au/ay. 
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Another problem associated with multi-wire array measurements is the need to 
average the same quantity obtained a t  two spatial locations in order to approximate 
point-wise measurements at the probe centre. The data of the above-described 
experiment provided a means to assess possible effects of this averaging procedure. 
For each wire a auli3.t time series was computed. Then at  each instant a spatial 
average of aulat was computed using the inner two wires and the outer two wires 
respectively. From these (au/at)i and (aulat), time series, r.m.s. values were 
computed. As with the au/ay data, ratios of r.m.s. (aulat),, ( = (au/at)L) over (aulat); 
are presented in figure 7. The most significant attenuation shown in these results is 
for wire spacings Ay/q < 15. This attenuation continues, only more slowly, for 
greater Ayo values. Clearly, for a given non-dimensional wire spacing, the effect of 
increasing the mean shear (i.e. moving closer to the wall) is to promote further 
attenuation in this averaging procedure. Note that this effect is not apparent in the 
aulay data. It is also interesting to note that the attenuation of (&/at)’ for small Ay 
is greater than that of (au/ay)’. These results suggest that significant changes in the 
temporal gradients exist across Kolmogorov-scale eddies. This spatial sensitivity in 
the temporal gradients was also suggested in the discussion of figure 6. 

It should be noted that the utility of the results in figures 7-9 depends on the 
absolute accuracy of the inner-array results. Of course, the absolute values of 
(aulay)’ are not easily verifiable. However, for the au/at data no statistically 
significant difference was found between (aulat); (Aylq x l), and (aulat)‘ derived 
from the individual wires of the inner array. 

An assessment of the validity of the assumption : 

av av 
ax ax -a t  ( z )  = -at (z+Az) 

(required to compute o, from the present probe) was made by spatially separating 
two x-arrays in the spanwise direction and computing the av/ax correlation 
coefficient for various Az separations. The results of this test are shown in figure 10 
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as a function of the non-dimensional spanwise spacing a t  y+ x 140 in the R, = 1010 
boundary layer. Two runs were made per Ax spacing to increase confidence in the 
results. Also included in this figure (for reference) are the u- and v-correlation 
coefficients. 

These results show, for example, that a t  yf = 140 an average error of 
approximately 20% can be expected in the instantaneous av/ax values for Ax 
separations of approximately 7q (which is x 19 viscous scales a t  the given position 
in the boundary layer). Examination of table 2 shows that in the R, x 1010 
boundary layer the separation between the parallel and the x -array centre is always 
less than 7 = 7. Most of the R, = 2870 data, and about half of the R, = 4850 data 
satisfy this condition. However, these results should be viewed with some reservation 
since, in general, integral scales decrease as the wall is approached, and a significant 
Reynolds-number dependence may exist for this correlation coefficient. In  any case, 
these results suggest that &/ax (and probably all v-gradients) are largely comprised 
of small-scale contributions, and thus attempts to resolve v-gradients over wire 
spacings much greater than a few Kolmogorov scales will result in significant errors. 
Foss et al. ( 1 9 8 6 ~ )  support these findings with results from a similar experiment done 
in a free-shear flow. On the plus side, however, the contribution of this error to 
spanwise vorticity statistics is diminished in the near-wall region since in this region 
(aulay)’ dominates (avlaz)’. 

5.1.3. The resolution of w, 

To investigate probe-scale effects on 0: the distributions of two different non- 
dimensional functions containing w; were examined. 

Figure 11 shows an inner-variable normalization versus y’. As can be seen, this 
normalization apparently scales the data. This conclusion is reinforced by the fact 
that a t  a given y+, w: for the present data varies by a factor of greater than ten. An 
explanation of the error bars presented in this figure was given in $4.2. 
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The results of this figure also suggest that spatial-resolution effects attenuate both 
the present data and the data of Balint et al. (1987a). In the wall region, a small but 
identifiable attenuation with increasing Re can be observed. This attenuation (for the 
present data) is consistent with a decrease in spatial resolution resulting from an 
increased non-dimensional probe scale caused by an increase in the Reynolds 
number. More specifically, given that (aulay)’ dominates (avlaz)’ in the inner region, 
the observed attenuation probably represents the increase in the Ay+ between the 
parallel-array wires as Re increases. 

To further examine the spatial resolution effects suggested in figure 11, an 
alternative non-dimensional function containing w; was examined. Figure 12 shows 
distributions of ywilu,  us. y / B .  Representing the data in this manner shows a distinct 
Reynolds-number trend in the opposite direction to that predicted by spatial- 
resolution effects. Given this Reynolds-number dependence (and assuming that a t  
each Re this function is represented by a single curve), the distribution of Balint 
et al. (Re = 2100, h+ x 8.9) should lie between the two lower Reynolds-number 
distributions of the present study. The fact that i t  does not is probably because of 
their larger h+. This figure indicates that their measurements show an attenuation 
between 10 and 15%. This result is in remarkable agreement with the findings in 
figure 7. 

5.2. Convergence of turbulence statistics 
Typically, studies examining the convergence of turbulence statistics pay little 
attention to global effects such as the level of mean shear and the overall Reynolds 
number. Wall-bounded shear flows present perhaps the most demanding conditions 
for obtaining acceptable statistical convergence. Intermittently fluctuating phenom- 
ena are typically difficult to characterize statistically. In boundary layers one has 
both the turbulent/non-turbulent interface at  the outer edge, and the highly 
intermittent bursting phenomena near the wall. 

This section summarizes results of a fairly comprehensive study of factors affecting 
statistical convergence for a variety of variables in four regions of the boundary layer 
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(in which the physics are different), over the R, range given in table 1. The details 
of this study may be found in Klewicki & Falco (1988). A short review of 
analyticallempirical relations concerning the estimation of convergence times 
necessary to  ensure a given accuracy is given by Antonia et al. (1982), and thus will 
not be repeated here. Rather, the goal of this section is both to document some of the 
factors influencing statistical convergence, and to provide purely empirical guidelines 
by which to design experiments. 

5.2.1. Methodology 

Cumulative estimates of statistics up to the fourth moment were computed for u, 
v, uv, &/at, &/ax, au/ay,  w, and vw,. These estimates were output at regular intervals 
of 200000 points (the corresponding integration times depend on the sampling rate). 
The relatively long times between the intermediate averages were chosen to facilitate 
statistically meaningful convergence results. The convergence data for the above 
variables were compiled for the three Reynolds numbers given in table 1,  and within 
four zones of the boundary layer (12 < y+ < 18, 40 < y+ < 50, 0.36 < y/6 < 0.40, 
0.75 < y/6 < 0.80). These zones are identified as ‘near wall’, ‘strong shear’, ‘weak 
shear ’ and ‘intermittent ’ respectively. 

Convergence data were compiled so that for each variable the possible effects of 
Reynolds number and position in the boundary layer could be identified. Statistical 
convergence was measured in terms of an absolute percent convergence from a final 
value resultant from using an entire data record. Thus, the data analysis assumed 
that the final value was the true value. This assumption proved to be valid in the vast 
majority of cases. The results were compiled in terms of non-dimensional time units, 
TU,/S, where T is the averaging time. These units were chosen to represent 
approximate non-dimensional integral timescales. 

The variables were divided into three groups : velocities and Reynolds stress, 
velocity gradients and vorticity, and a velocity-vorticity product. Comparison of 
averaging times necessary to obtain a given convergence uncertainty were made 
between variables within a given group, and between the different groups. 
Furthermore, trends with Reynolds number and zone were identified. The major 
results of these comparisons are summarized below. 

5.2.2. Summary of convergence results 

Distinct boundary-layer zonal and Reynolds-number trends in convergence were 
observed for the statistical moments of the u-, v- and uv-fluctuations. These trends 
showed that increasing either R, or decreasing the distance from the wall generally 
increased the time to convergence. Both of these trends may possibly be lumped into 
one, which simply states that for these variables increasing the absolute level of mean 
shear increases the time to  convergence. Also, comparisons between the velocities 
and Reynolds stress showed that the uv-statistics converged a t  least as fast as either 
of the measured velocity components. 

The convergence of the velocity-gradient statistics showed much smaller zonal 
and/or R, variations than those of the velocity and Reynolds stress statistics. Their 
convergence did, however, appear to  be adversely affected in the intermittent regions 
both very near and very far from the wall. In terms of absolute time to convergence, 
the gradient quantities appeared to converge slightly faster than the velocities or 
Reynolds stress. However, since &/Urn is probably an integral timescale most 
appropriate for the velocities, the time necessary for convergence normalized by a 
characteristic time appropriate to the gradient quantities is probably greater than 
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u ,  8, uv 
auiat. 

Average R.m.s. Skewness Kurtosis 
to ensure to ensure to ensure to ensure 

10ooUw/s 1000uw/s 4000Um/8 2500Uw/S 

f 3 Yo accuracy & 3 Yo accuracy & 5 % accuracy f 5 % accuracy 

avjax’, w,, - l000Uw/S 3500UJS 200OUw/S 
aUIaY, 
vwz 3000 Uw /S 1000 urn /s 6000Uw/S 5000U,/S 

TABLE 4. Non-dimensional averaging time criteria to ensure the convergence of statistics up to 
4th-order moments in boundary-layer flows over the Reynolds-number range 1010 < R, 6 4850 

TU,/S. The results also suggested that spatial gradients converge considerably more 
slowly than temporal gradients. These results may be associated with differences 
between the fine-scale spatial and temporal structure. Also the results indicated that 
matching experiments by matching R, (the microscale Reynolds number = u’h/v) is 
not necessarily sufficient to ensure objective comparisons. 

The statistics of the velocity vorticity product, vo,, required long averaging times 
to converge relative to the other variables examined. The convergence of vw, 
statistics is adversely affected by both increasing the level of mean shear and/or the 
Reynolds number . 

Table 4 presents a compilation of general convergence criteria. Note that these 
criteria are based upon the assumption that one wishes to obtain profiles across the 
entire boundary layer, and thus, for example, are conservative for data analysis in 
the weak-shear zone. The criteria in this table indicate the necessity for considerably 
longer averaging times than was initially expected. It is a t  present felt that there are 
three plausible explanations for this. The first is that this subject has never been, to 
our knowledge, thoroughly investigated in boundary layers, and thus our 
expectations gained mainly from free-shear flows did not apply. The second is that 
because of the very good resolution of the probe, more of the high-intensity fine scale- 
information in the tails of the respective probability distributions, was represented 
than in earlier studies. And third, the statistical convergence may be profoundly 
adversely affected by even small levels of ‘noise’ (as described in $4.2) caused by 
variations in the free-stream velocity. 

6. Discussion and conclusions 
This study has examined aspects of hot-wire measurements that are sensitive to 

the small-scale structure in boundary layers. They may be grouped into two (not 
necessarily independent) categories relating to the probe’s spatial and temporal 
resolution, and the statistical detail desired. 

Based upon the data of figure 5 it appears that the maximum value of u’/u, 
increases with increasing R,. Imperfect spatial resolution can hide this dependence 
because the attenuation (due to increasing wire length in viscous units as a 
consequence of increasing R,) is apparently greater than the increase due to Reynolds 
number. Thus, detecting this Reynolds-number trend provides an indicator of good 
probe resolution, and constitutes a criterion for studies investigating Reynolds- 
number dependence (over the given R, range). It is probably true that as a wire of 
given length becomes greater than about 8uJv (as R, is increased), attenuation 
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caused by spatial averaging effects will begin to  conceal this trend. The competing 
effects between spatial resolution and Reynolds number have apparently hidden the 
true flow physics, and have led many to the belief that the maximum value of u’/u, 
is indeed a constant. In  fact, if one were to ignore both of these effects then the data 
of figure 4 would appear to support this result in that  most of these data are located 
in a narrow band about u‘/u, % 2.8. Furthermore, with regard to previous studies 
investigating wire-length effects, the present results suggest that Reynolds-number 
effects are smaller but not small compared to spatial-averaging effects. This result is 
contrary to the conclusion of Johansson & Alfredsson (1983). Furthermore, the 
criterion of Ligrani & Bradshaw (1987) is not universal since identifiable attenuation 
can clearly be seen in figure 4, for 5 < If < 20. I n  the discussion of figure 6 results 
were deduced supporting the notion that the spatial resolution required to obtain 
accurate velocity-derivative fluctuations is greater than that required for the 
velocity fluctuations. 

The main result concerning wire-spacing effects on the computed value of spatial 
velocity gradients is that  Wyngaard’s (1969) criterion (equation (1) )  is to a very good 
approximation valid even under anisotropic conditions. Furthermore, changing the 
level of mean shear seems to have little effect on the validity of this criterion. 

Conversely however, the aulat results indicate that spatially averaging velocity 
gradients a t  each instant (say, to approximate pointwise measurements a t  a probe 
centre) results in significant attenuation in the subsequent r.m.s. Results of this 
averaging are also sensitive to the level of mean shear. These results suggest that 
even for probes with small off-centre sensing elements (say greater than 371) one is 
probably better off accepting non-centred measurements rather than computing an 
instantaneous spatial average. For example, for the present probe geometry one 
would probably not improve the accuracy of the estimated value of av/ax a t  the 
probe centre by adding another x -array at - Az from the parallel-array centre, and 
then instantaneously averaging over the 282 separation between the two x -arrays. 

These results also suggest that  there are differences between the temporal and 
spatial structure of the fine-scale motions in the wall region. Further experiments on 
these differences (especially as a function of Reynolds number) may lead to new 
insights concerning the conflicting results (at very different Reynolds numbers) of 
Willmarth & Bogar (1977) and Johnson & Eckelmann (1983) as discussed in $ 1 .  

The results in figure 8 give a good indication of how electronic noise in the velocity 
signals enters into the tIu/ay signals. It was demonstrated that to a very good 
approximation @(au/ay) w et/Ay2 in the noise-dominated part of the spectrum. This 
relation allows one to optimize the choice of Ay for a given system noise level by 
simply performing a single-wire measurement. The data of figure 8 was also used to 
demonstrate that the main effect of finite wire separation is to remove energy from 
frequencies higher than an approximate cutoff value f,, defined as Ul(2nAy). 

The assumption that the instantaneous values of av/ax a t  (2) equals av/ax at 
( z+  Az), specific to the current w, probe, proved to have an average accuracy of about 
80% for Az/q w 7 in the logarithmic region of the R, = 1010 boundary layer. Thus, 
for the present study its validity is primarily in question for the inner part of the 
highest R, distribution. 

Concerning the experiment quality, it was documented that uncertainties 
associated with the low speeds of the present experiments were small. Also, the 
matching calibration procedure used for the parallel-array elements proved to 
eliminate detectable correlated errors in (dulay)’. Figure 8 shows this indirectly in 
that virtually all of the noise in @(au/dy) may be attributed to electronic noise. 
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The statistical convergence study led to the conclusion that as a result of 
sensitivity to the level of mean shear, the intermittency level, and Reynolds-number 
effects, existing convergence formulae should be used with caution in wall flows. 
Also, one should not apply criteria developed in other flow fields to wall-flow studies. 
For example, a t  the centreline of a turbulent jet (with a centreline velocity equal to 
U, and a transverse scale of Lo) Antonia et al. (1982) show that it takes a time of 
approximately 12L0/U, to obtain + 5 %  accuracy in the skewness of (aulat) .  This 
criterion, applied to boundary-layer flows (using 6 and U,) is orders of magnitude 
smaller than that cited in the present study or in the study of Mestayer (1982). 
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